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Chapter I:

Sums of Independent Random Variables

§1.1 Independence

In one way or another, most probabilistic analysis entails the study of large
families of random variables. The key to such analysis is an understanding of
the relations among the family members; and of all the possible ways in which
members of a family can be related, by far the simplest is when the relationship
does not exist at alll For this reason, we will begin by looking at families of
independent random variables.

Let (Q,F,P) be a probability space (i.e.,  is a nonempty set, F is a
o-algebra over (2, and P is a measure on the measurable space (2, F) hav-
ing total mass 1); and, for each 7 from the (nonempty) index set Z, let F; be
a sub o-algebra of F. We say that the o-algebras F;, ¢ € Z, are mutually
P-independent or, less precisely, P-independent, if, for every finite subset
{i1,...,in} of distinct elements of Z and every choice of 4; € F;_,1 <m < n,

(L.1.1) P(A;,N---NA;,) =P(Ay,) - P(A,)-

In particular, if {4; : ¢ € T} is a family of sets from F, we say that A;, i €
Z, are P-independent if the associated o-algebras F; = {0, A;, A;C,Q}, i € T,
are. To gain an appreciation for the intuition on which this definition is based,
it is important to notice that independence of the pair A; and As in the present
sense is equivalent to

P(4; N 43) = P(4,)P(4,),

the classical definition which one encounters in elementary treatments. Thus, the
notion of independence just introduced is no more than a simple generalization
of the classical notion of independent pairs of sets encountered in non-measure
theoretic presentations; and therefore, the intuition which underlies the elemen-
tary notion applies equally well to the definition given here. (See Exercise 1.1.10
below for more information about the connection between the present definition
and the classical one.)

As will become increasing evident as we proceed, infinite families of indepen-
dent objects possess surprising and beautiful properties. In particular, mutually
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independent o-algebras tend to fill up space in a sense which is made precise by
the following beautiful thought experiment designed by A.N. Kolmogorov. Let
Z be any index set, take Fp = {@,Q}, and for each nonempty subset A C J, let

Fa=\F
ieA

be the o-algebra generated by |J,c, F: (i.e., the smallest o-algebra containing
all of the F;’s). Next, define the tail o-algebra 7 to be the intersection over
finite A C 7 of the o-algebras F,g. When T itself is finite, 7 = {0,Q} and
is therefore P-trivial in the sense that P(A) € {0,1} for every A € 7. The
interesting remark made by Kolmogorov is that even when Z is infinite, 7 is
P-trivial whenever the original F;’s are P-independent. To see this, first note
that, by assumption, Fr, is P-independent of Fr, whenever F; and F> are finite,
disjoint subsets of Z. Since for any (finite or not) A C Z, F, is generated by the
algebra

U{fp : F is a finite subset of A},

it follows (cf. Exercise 1.1.12) first that Fa is P-independent of F,g for every
A C 7 and then that T is P-independent of Fz. But 7 C Fz, which means
that T is independent of itself; that is, P(ANB) = P(A)P(B) forall A, Be T.
Hence, for every A € T, P(A) = P(A)?, or, equivalently, P(4) € {0,1}; and so
we have now proved the following famous result.

1.1.2 Theorem (Kolmogorov’s 0-1 Law). Let {F; : i € I} be a family of
P-independent sub-o-algebras of (0, F, P), and define the tail o-algebra T as
above. Then, for every A € T, P(A) is either 0 or 1.

To get a feeling for the kind of conclusions which can be drawn from Kol-
mogorov’s 0—1 Law (cf. Exercises 1.1.18 and 1.1.19 below as well), let {4,,}5° be
a sequence of subsets of €2, and recall the notation

HﬁAnzﬁ UAn

(113) nee m=1n>m
= {w : w € A, for infinitely many n € Z¥ }

Obviously, lim,, ., A, is measurable with respect to the tail field determined by
the sequence of o-algebras {0, A,, A,C,Q}, n € ZT; and therefore, if the A,’s
are P-independent elements of F, then

P ( lim An) € {0,1}.
71— 00
In words, this conclusion can be summarized as the statement that: for any
sequence of P-independent events A,, n € Z*, either P-almost every w € Q
is in infinitely many A, ’s or P-almost every w € Q is in at most finitely many

A, ’s. A more quantitative statement of this same fact is contained in the second
part of the following useful result.
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1.1.4 Borel-Cantelli Lemma. Let {A,: n € Z*} C F be given. Then
(1.1.5) ZIP(AH) <oo => P (nlggo A,,) ~0.

Conversely, if the A, ’s are P-independent sets, then

n—>00

(1.1.6) iP(An) —0 = P ( Tim An) =1

(See part (iii) of Exercise 5.2.34 and Lemma 8.5.46 for variations on this theme.)

PRrRoOOF: The first assertion is an easy application of countable additivity. Name-
ly, by countable additivity,

P(Jim an) = Jim P(U 40) < Jim 3 P(4n) =0

if 350°  P(A,) < o0.
To prove (1.1.6), note that, by countable additivity, P (R,Hoo An) = 1 if
and only if

"}i_r)nooP( N AnC> —p G M AL =P<(n§roio,4n) [:) — 0.
n>m m=1n>m

But, again by countable additivity, for given m > 1 we have that:

=0

o) N N
P ( N AnE) = lim ] (1-P(4n)) < lim exp {— Y P(4,)

n=m

if 3.2, P(A,) = oo. (In the preceding, we have used the trivial inequality
1-t<et te[0,00).) O

Another, and perhaps more dramatic, statement of the conclusion drawn in
the second part of the preceding is the following. Let N(w) € Z* U {oo} be the
number of n € Z* such that w € A,. If the A,’s are independent, then Tonelli’s
Theorem implies that (1.1.6) is equivalent tof

P(N < 00) >0 = EP[N] < oo.

t Throughout this book, we use E¥ {X, A] to denote the expected value under P of X over the
set A. That is, EP[X, A] = f 4 X dP. Finally, when A = Q we will write EP [X].
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Having described what it means for the o-algebras to be P-independent, we
can now transfer the notion to random variables on (2, F, P). Namely, for each
i € Z, let X; be a random variable (i.e., a measurable function on (2, F)) with
values in the measurable space (E;, B;). We will say that the random variables
X, i € Z, are (mutually) P-independent if the o-algebras

o(X:)=X;'(B:) = {X;'(B:): Bi € Bi}, i €T,
are P-independent. Using
B(E;R) = B((E,B);R)

to denote the space of bounded measurable R-valued functions on the measurable
space (E,B), notice that P-independence of {X; : ¢ € T} is equivalent to the
statement that

(1.1.7) EP [fi, 0 Xiy -+ fin 0 Xi, ] =EP [fi, 0 Xiy] -+ EF [fi,, 0 X, ]

for all finite subsets {i1,...,in} of distinct elements of Z and all choices of
fi, € B(E,-l;R) ,-.-,and f; € B(Ein;R). Finally, if we use 14 given by

L (1 if weAd

A(“’)‘{o if wdA

to denote the indicator function of the set A C €2, notice that the family of
sets {A; : ¢ € I} C F is P-independent if and only if the random variables
14,, 1 € Z, are P-independent.

Thus far we have discussed only the abstract notion of independence and have
vet to show that the concept is not vacuous. In the modern literature, the
standard way to construct lots of independent quantities is to take products of
probability spaces. Namely, if (Ei, B;, ui) is a probability space for each i € 7,
one sets 1 = HieZ E;, defines m; : 2 — E; to be the natural projection map
for each i € Z, takes F; = m; }(B;), i € Z, and F = Viez Fi, and shows that
there is a unique probability measure P on (2, F) with the properties that

P(n;7'Ty) = p;(T;) forall i€ZandT;€B;

and the o-algebras F;, i € Z, are P-independent. Although this procedure is
extremely powerful, it is rather mechanical. For this reason, we have chosen
to defer the details of the product construction to Exercise 1.1.14 below and
to, instead, spend the rest of this section developing a more hands-on approach
to constructing independent sequences of real-valued random variables. Indeed,
although the product method is more ubiquitous and has become the construc-
tion of choice, the one which we are about to present has the advantage that it
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shows independent random variables can arise “naturally” and even in a familiar
context.

Until further notice, we take (€2, F) = ([0,1), 3[0,1)) (when E is a metric space,
we use Bg to denote the Borel field over E) and P to be the restriction A 1y of
Lebesgue’s measure Ag to [0,1). We next define the Rademacher functions
R,,n € Z*, on Q as follows. Define the integer part [t] of ¢ € R to be the
largest integer dominated by ¢ and consider the function R : R — {—1,1} given
b

Y -1 if t-[t]e0,3)
ro={", | e
if t-[t]e[3,1)

29
The function R,, is then defined on [0,1) by
R,(w)=R(2"'w), neZ'andwel01).

We will now show that the Rademacher functions are P-independent. To this
end, first note that every real-valued function f on {—1,1} is of the form a +
Bz, x € {—1,1}, for some pair of real numbers o and 8. Thus, all that we have
to show is that

E” (1 + B1R1) -+ (an + BnRn)] =1+ o

for any n € Z* and (a1,B1),---,(an,Bn) € RZ. Since this is obvious when
n =1, we will assume that it holds for n and will deduce that it must also hold
for n + 1; and clearly this comes down to checking that

EP [F(Ry,...,Ry) Rny1] =0
for any F : {-1,1}" — R. But (Ry,...,R,) is constant on each interval

m m+1
on s on ) , 0 m <

Ipn = [
whereas R, integrates to 0 on each I, ,. Hence, by writing the integral over
() as the sum of integrals over the I, ,,’s, we get the desired result.

At this point we have produced a countably infinite sequence of independent
Bernoulli random variables (i.e., two-valued random variables whose range
is usually either {—1,1} or {0,1}) with mean-value 0. In order to get more
general random variables, we combine our Bernoulli random variables together
in a clever way.

Recall that a random variable U is said to be uniformly distributed on the
finite interval [a, b] if

PU<Lt)= Z:—Z for t € [a, b].
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1.1.8 Lemma. Let {Y; : ¢ € Z"} be a sequence of P-independent {0,1}-
valued Bernoulli random variables with mean-value % on some probability space

(Q,F, P), and set
U = Z y.
£=1

Then U is uniformly distributed on [0, 1].

PROOF: Because the assertion only involves properties of distributions, it will
be proved in general as soon as we prove it for a particular realization of inde-
pendent, mean-value %, {0,1}-valued Bernoulli random variables. In particular,
by the preceding discussion, we need only consider the random variables

enfw) = L En@)
2
on ([0,1),3[0,1),)\[0,1)). But, as is easily checked, for each w € [0,1], w =
Yoo 1 2 ™€p(w). Hence, the desired conclusion is trivial in this case. O

Now let (k,¢) € Z* x Z* > n(k,£) € Z* be any one-to-one mapping of
Zt x Z% onto Z*, and set

n€Z" and w € [0,1),

1+ Ryk,e)

2 ?
Clearly, each Y ¢ is a {0, 1}-valued Bernoulli random variable with mean-value
%, and the family {Y;,: (k,¢) € (Z+)2} is P-independent. Hence, by Lemma
1.1.8, each of the random variables

— N\ Vit +
Up=) o kel

Yk’g = (k,é) € (Z+)2.

is uniformly distributed on [0,1). In addition, the Uj’s are obviously mutually
independent. Hence, we have now produced a sequence of mutually independent
random variables, each of which is uniformly distributed on [0,1). To complete
our program, we use the time-honored transformation which takes a uniform
random variable into an arbitrary one. Namely, given a distribution function
F on R (i.e., F' is a right-continuous, nondecreasing function which tends to 0
at —oo and 1 at +00), define F~! on [0,1] to be the left-continuous inverse of
F. That is,
F7l(t)=inf{s € R: F(s) >t}, tel0,1].

(Throughout, the infimum over the empty set is taken to be +00.) It is then an
easy matter to check that when U is uniformly distributed on [0,1) the random
variable X = F'~! o U has distribution function F:

P(X <t)=F(t), teR

Hence, after combining this with what we already know, we have now completed
the proof of the following theorem.
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1.1.9 Theorem. Let @ = [0,1), F = Bjo 1), and P = Ag1). Then for any
sequence {Fy : k € Z*} of distribution functions on R there exists a sequence
{Xk : k € Z* } of P-independent random variables on (Q, F, P) with the prop-
erty that P(Xk < t) = Fy(t),t € R, foreach k € Z+.

Exercises

1.1.10 Exercise: As we pointed out, P(Al N Ag) = P(Al)P(Az) if and only
if the o-algebra generated by A, is P-independent of the one generated by As.
Construct an example to show that the analogous statement is false when dealing
with three, instead of two, sets. That is, just because P(A1 N A N A3) =
P(Al)P(Az)P(Ag), it is not necessarily true that the three o-algebras generated
by Aj, Az, and Az are P-independent.

1.1.11 Exercise: In this exercise we point out two elementary, but important,
properties of independent random variables. Throughout, (Q2,F, P) is a given
probability space.

(i) Let X1 and X5 be a pair of P-independent random variables with values
in the measurable spaces (F1,B1) and (E2, B2), respectively. Given a By x Bs-
measurable function F' : E; X Es —> R which is either nonnegative or bounded,
use Tonelli’s or Fubini’s Theorem to show that

72 € By — f(ez) =EP[F(X1,2;)| € R
is Bo-measurable and that
E”[F (X1, X2)| = EP [£(X5)].
(ii) Suppose that X3,..., X, are P-independent, real-valued random variables.
If each of the X,,,’s is P-integrable, show that X --- X, is also P-integrable and

that
EP [X:---X,] =EP [X1]---EP [X,].

1.1.12 Exercise: Given a nonempty set (2, recall’ that a collection C of subsets
of 2 is called a wr-system if C is closed under finite intersections. At the same

T See, for example, §3.1 in the author’s A Concise Introduction to the Theory of Integration,
Third Edition publ. by Birkhauser (1998).
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time, recall that a collection £ is called a A-system if Q € £, AUB € L
whenever A and B are disjoint members of £, B\ A € £ whenever A and B are
members of £ with A C B, and J]° A, € £ whenever {4, }$° is a nondecreasing
sequence of members of £. Finally, recall (cf. Lemma 3.1.3 in 4bid.) that if C is
a m-system, then the o-algebra o(C) is the smallest £-system £ D C.

Now, let (2, F, P) be a probability space, and, for each element i of the index
set Z, let C; C F be a m- system. Show that the o-algebras F; generated by
the C;’s are P-independent if and only if (1.1.1) holds for all choices of n > 2,
distinct ¢1,...,%, € Z, and A;;, €Cyy,..., A;, €Cy,.

1.1.13 Exercise: In this exercise we discuss two criteria for determining when
random variables on the probability space (€2, F, P) are independent.

(i) Let X4,..., and X,, be bounded, real-valued random variables. Using Weier-
strass’s approximation theorem, show that the X,,’s are P-independent if and
only if

EP [x .- X7»] = EP [X(] - EP [X7]

for all mq,...,m, € N.

(ii) Let X : @ — R™ and Y : @ — R"™ be random variables. Show that X
and Y are P-independent if and only if

B [oxp [T (@ X g + (8,Y);0 )|
— P [exp [v=1 (a,X)RmH EP [exp [v= (ﬂ,Y)Rn]]

for all @ € R™ and 3 € R™.

Hint: The only if assertion is obvious. To prove the if assertion, first check
that X and Y are independent if

E” [£(X) 9(Y)] = EP [f(X)] E” [¢(Y)]
for all f € C*(R™; C) and g € C° (R"; (C). Second, given such f and g, apply

elementary Fourier analysis to write

f(x) = eV—1(ex)gm o(a)da and g(y)= / eV—1(B.Y)rn »(B)dB,
RrR™ R"

where ¢ and 3 are smooth functions with rapidly decreasing (i.e., tending
to 0 as x| — oo faster than any power of (1 + |x|)~!) derivatives of all orders.
Finally, apply Fubini’s Theorem.
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1.1.14 Exercise: Given a pair of measurable spaces (E1, B1) and (Es, Bs), recall
that their product is the measurable space (E1 X Es, By X Bz), where B; X By is
the o-algebra over the Cartesian product space E; x E, generated by the sets
It x Iy, T € B;. Further, recall that, for any probability measures y; on (E;, B;),
there is a unique probability measure p; X ps on (E1 X FEq,B; % Bz) such that

(;u'l X [tz) (Fl X Fg) = ul(Fl)uQ(Fz) for T; € B;.

More generally, for any n > 2 and measurable spaces {(Ei,B,-)}?, one takes
[17 Bi to be the o-algebra over []} E; generated by the sets [[T I}, I'; € B;. In
particular, since [[}*" E; and [[7*" B; can be identified with ([J? E;)x En+1 and
(I17 Bi) x By41, respectively, one can use induction to show that, for every choice
of probability measures p; on (E;, B;), there is a unique probability measure

17 #i on ([17 Ei, [17 B:) such that

(H#z) (HE) = ﬁm(ri), L € B.

The purpose of this exercise is to generalize the preceding construction to
infinite collections. Thus, let J be an infinite index set, and, for each i € J, let
(Fs, B;) be a measurable space. Given § # A C J, we will use E, to denote the
Cartesian product space [];., E; and ms to denote the natural projection map
taking E; onto E,. Further, we use By = [[,; B; to stand for the o-algebra
over E5 generated by the collection C of subsets

Tt (H n-) , TieB,
icF

as F varies over nonempty, finite subsets of J (abbreviated by: § # F CC J).
In the following steps, we will outline a proof that, for every choice of proba-
bility measures y; on (E;, B;), there is a unique probability measure [], 5 u; on
(Eg, B;;) with the property that

(1.1.15) (H“i) (7‘(;1 (H Fz)) =[[w(@), Les,

i€J icF i€F
for every ) # F CC J. Not surprisingly, the probability space
i€3  i€T i€J
is called the product over J of the spaces (Ei, B;, ﬂi); and when all the factors

are the same space (E, B, u), it is customary to denote it by (EJ,BJ, p:'), and
if, in addition, 3 = {1,..., N}, one uses (EN,BN,/I,N).
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(i) After noting that two probability measures which agree on a m-system agree
on the o-algebra generated by that m-system, show that there is at most one
probability measure on (Ej, B;) which satisfies the condition in (1.1.15). Hence,
the problem is purely one of existence.

(ii) Let A be the algebra over E5 generated by C, and show that there is a finitely
additive y : A —> [0,1] with the property that

(w5 (1)) = (Hui) (Tx), Tr B,

i€l

for all @ # F CC J. Hence, all that we have to do is check that y admits a o-
additive extension to By, and, by Carathéodory’s Extension Theorem, this comes
down to checking that p(A,) N\, 0 whenever {A4,}{° C A and A, \, 0. Thus,
let {A,}{° be a nonincreasing sequence from .4, and assume that p(A4,) > € for
some € > 0 and all n € Z+. We must show that (" 4,, # 0.

(iii) Referring to the last part of (ii), show that there is no loss in generality
if we assume that A, = 7!';: (FF,,), where, for each n € Z*, 0 # F,, CC J and
I'r, € Bp,. In addition, show that we may assume that F; = {i;} and that
F, = Fp1 U {in}, n > 2, where {i,}7° is a sequence of distinct elements of J.
Now, make these assumptions and show that it suffices for us to find a, € E;,,
¢ € Z+, with the property, for each m € Z%, (a1,...,am) € IF,,.

(iv) Continuing (iii), for each m, n € Z*, define gm n : Ef,, —> [0,1] so that
gm,n(me) = 1ry, (351'1,---,731',.) ifn<m

and

9m,n (me) = /

Ep,\Fm

n
Iy, (XF, YF\F,.) ( H Mi,) (dyF,\F..)

£=m+1

if n > m. After noting that, for each m and n, gmn+1 < gm,» and

Im,n (me) = L Im+1,n (me ’ yim+1) Hipyq (dy'im.H)a
imii
set gm = liMp 00 gm,n and conclude that

Im (me) = L Im+1 (me ’ yim+1) Hipmi1 (dyim+1)'

im1
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In addition, note that

| o) (o) = tim [ gun(on) o (a2

n—00
iy Eiy

= lim up(A,) > ¢,

n—00

and proceed by induction to produce a; € E;,, £ € ZT, so that
gm((a1,...,am)) > € forallmeZ".

Finally, check that {a}{° is a sequence of the sort for which we were looking
at the end of part (iii).

1.1.16 Exercise: Recall that if ¢ is a measurable map from one measurable
space (E,B) into a second one (E’,B’), then the distribution of ® under a
measure  on (E, B) is the pushforward measure @, 4 (also denoted by po®~1)
defined on (E', B') by

&, u(T) = p(@ () for TeB.

Given a nonempty index set J and, for each ¢ € J, a measurable space (E;, B;)
and an Ej;-valued random variable X; on the probability space (2, F, P), define
X : Q — [[;cq Ei so that X(w); = X;(w) for each ¢ € J and w € Q. Show
that {Xi 14 € 3} is a family of P-independent random variables if and only if
X, P = [l,c5(X:)«P. In particular, given probability measures p; on (E;, B;),

set
o=[[&, #=I[8 P=]]w

i€J i€l i€d
let X; : 2 — FE; be the natural projection map from 2 onto E;, and show that

{X; : i € 3} is a family of mutually P-independent random variables such that,
for each i € J, X; has distribution ;.

1.1.17 Exercise: Although it does not entail infinite product spaces, an inter-
esting example of the way in which the preceding type of construction can be
effectively applied is provided by the following elementary version of a coupling
argument.

(i) Let (€2, B, P) be a probability space and X and Y a pair of square P-integrable
R-valued random variables with the property that

(X(w) = X()) (Y(w) - Y(w')) >0 forall (w,w') € Q%
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Show that
E” [XY] > EF [ X]EF[Y).

Hint: Define X; and Y; on Q% for i € {1,2} so that X;(w) = X(w;) and
Y;(w) = Y(w;) when w = (w1,ws2), and integrate the inequality

0 S (X(wl) - X(WQ)) (Y(wl) — Y(wz)) = (Xl(w) - XQ(W)) (Yl(w) - Yz((ﬂ)))
with respect to P2.

(ii) Suppose that n € Z* and that f and g are R-valued, Borel measurable
functions on R™ which are nondecreasing with respect to each coordinate (sep-
arately). Show that if X = (Xl, ceey Xn) is an R™-valued random variable on a
probability space (2, B, P) whose coordinates are mutually P-independent, then

EF [£(X) g(X)] > EP [f(X)] E” [¢(X)]
so long as f(X) and g(X) are both square P-integrable.

Hint: First check that the case when n = 1 reduces to an application of (i).
Next, describe the general case in terms of a multiple integral, apply Fubini’s
Theorem, and make repeated use of the case when n = 1.

1.1.18 Exercise: A o-algebra is said to be countably generated if it contains
a countable collection of sets which generate it. In this exercise, we will show
that just because a o-algebra is itself countably generated does not mean that
all its sub-o-algebras are.

Let (2, F, P) be a measurable space and {fn :nE Z+} be a sequence of P-
independent sub-o-algebras of F. Further, assume that, for each n € Z*, there
is an A,, € F,, which satisfies o < P(An) < 1—q for some fixed a € (0, %) Show
that the tail o-algebra 7 determined by {]:n 1 n € Z“‘} cannot be countably
generated.

Hint: First, reduce to the case when each F,, is generated by the set A,,. After
making this reduction, show that C is an atom in T (i.e., B = C whenever
B € T\ {0} is contained in C) only if one can write

n—oo m=1n>m

where, for each n € Z*, either C, equals A, or A,0. Conclude that every
atom in 7 must have P-measure 0. Now suppose that 7 were generated by
{By : £ € N}. By Kolmogorov’s 0-1 Law (cf. Theorem 1.1.2), P(B,) € {0,1}
for every £ € N. Take

R { B, if P(B)

B, = =1 dset C=()\B
¢ = B " P(Bg):O and se —ﬂ ¢-

£eN
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Note that, on the one hand, P(C) = 1, while, on the other hand, C is an atom
in T.

1.1.19 Exercise: Here is an application of Kolmogorov’s 0-1 Law to Lebesgue’s
measure on [0,1).

(i) Referring to the discussion preceding Lemma 1.1.8, define the transformations
T, :[0,1) — [0,1) for n € Z* so that

1+ R, (w)

Tn(w) =W = on+1 3

w € [0,1),

and notice (cf. the proof of Lemma 1.1.8) that T,,(w) simply flips the nth coeffi-
cient in the binary expansion w. Next, let I € By 1), and show that I" is measur-
able with respect of the o-algebra O'(Rn n > m) generated by {R, : n > m}
if and only if T,(T') = T for each 1 < n < m. In particular, conclude that
Ao,1)(T) € {0,1} if T,I' =T for every n € Z*.

(ii) Let ¥ denote the set of all finite subsets of Z1, and for each F € §, define
TF :{0,1) — [0,1) so that T? is the identity mapping and

TFUIm} — TF 0T, foreach F € Fand m € Zt \ F.

As an application of (i), show that for every T' € Byg 1) with Ao 1)(I") > 0,

Ao,1) (U TF(I‘)> =1

Feg

In particular, this means that if I' has positive measure, then almost every
w € [0,1) can be moved to I" by flipping a finite number of the coefficients in the
binary expansion of w.

§1.2: The Weak Law of Large Numbers

Starting with this section, and for the rest of this chapter, we will be studying
what happens when one averages P-independent, real-valued random variables.
The remarkable fact, which will be confirmed repeatedly, is that the limiting
behavior of such averages depends hardly at all on the variables involved. Intu-
itively, one can explain this phenomenon by pretending that the random vari-
ables are building blocks which, in the averaging process, first get homothetically
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shrunk and then reassembled according to a regular pattern. Hence, by the time
that one passes to the limit, the peculiarities of the original blocks get lost.
Throughout our discussion, (2, F, P) will be a probability space on which we
have a sequence {X,}$° of real-valued random variables. Given n € Z*, we will
use S,, to denote the partial sum X; 4 --- 4+ X,, and S, to denote the average

Our first result is a very general one; in fact, it even applies to random variables
which are not necessarily independent and do not necessarily have mean 0.

1.2.1 Lemma. Assume that
(1.2.2) EP[XZ] < oo forn€ Z* and EF[Xp X, =0if k+#¢L

Then, for each € > 0,

(1.2.3) € P([Sa| > ¢) <E°[F,] = ;%2_ S EP[X}] forneZ*.
=1
In particular, if
(1.2.4) M = sup EP[X2] < oo,
neZt
then
(1.2.5) 62P<]§n] > e) <EP [?:] < %, n€Z" and e > 0;

and so S, —> 0 in L?(P) and also in P-probability.
PRroOF: To prove the equality in (1.2.3), note that, by (1.2.2),
B [52] = > BP[X7).
£=1

The rest is just an application of Chebyshev’s inequality, the estimate which
results after integrating the inequality

€1eo0) (IY]) S Y1 o) (IY]) <YV

for any random variable Y. 0O
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Obviously, Lemma 1.2.1 has less to do with the property of independence than
it does with Bessel’s inequality for general orthogonal functions. On the other
hand, independent random variables provide a ready source of orthogonal func-
tions. Indeed, recall that for any P-integrable random variable X, its variance
var(X) satisfies

(1.2.6) var(X)=EFP [(X _EP [X])Z] = EP [x?] - (EP[X])” < EP [Xx2].

In particular, if the random variables X,,, n € Z*, are P-independent and satisfy
the first part of (1.2.2), then the random variables

X.=X,-EF[X,] nezt,

are still square P-integrable, now have mean-value 0, and therefore satisfy the
whole of (1.2.2). Hence, the following statement is an immediate consequence of
Lemma 1.2.1.

1.2.7 Theorem. Let {Xn S Z+} be a sequence of P-independent, square
P-integrable random variables with mean-value m and variance dominated by
o?. Then, for every n € Z* and € > 0:

(1.2.8) & P([Bn—m| > ¢) <BF[Ba-m)*] < T

In particular, S, — m in L?(P) and therefore in P-probability.

As yet we have only made minimal use of independence: all that we have done
is subtract off the mean of independent random variables and thereby made them
orthogonal. In order to bring the full force of independence into play, one has to
exploit the fact that one can compose independent random variables with any
(measurable) functions without destroying their independence; in particular,
truncating independent random variables does not destroy independence. To see
how such a property can be brought to bear, we will now consider the problem
of extending the last part of Theorem 1.2.7 to X,,’s which are less than square
P-integrable. In order to understand the statement, recall that a family {X,- :
1€l } of random variables is said to be uniformly P-integrable if

(1.2.9) Jim_ supE? (1, |X:] > B] =o.

As the proof of the following theorem illustrates, the importance of this condition
is that it allows one to simultaneously approximate the random variables X;, 7 €
Z, by bounded random variables.
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1.2.10 Theorem (The Weak Law of Large Numbers). Let {X,: n€Z"}
be a uniformly P-integrable sequence of P-independent random variables. Then

—Z m — EF [Xm]) — 0 in LY(P)

and, therefore, also in P-probability. In particular, if {Xn 1n € Z+} is a
sequence of P-independent, P-integrable random variables which are identically
distributed, then S, — EF[X:] in L*(P) and P-probability. (Cf. Exercise
1.2.15 below.)

ProOF: Without loss in generality, we will assume that EF[X,,] = 0 for every
neZ".
For each R € (0,0), define fr(t) =t1_g g)(t), t € R,

i) = BP [fro Xa], XS = froX, —m{®, and Y = X, - X,

and set

S(R) ZX(R) and T(R) ZY(R)

Since E[X,] =0 = m(R) = —E[X,, |X.| > R],
EP [iS l] <EP [[S(R)” +EF [IT(R)”

<E”[|5.°)"] i max B [|Xe|, |Xe| > B

< % + 2?61%>+<]EP [Ile, | Xe| > R];
and therefore, for each R > 0,

m E”[[5,]] < 2supIEP[ng| |Xel > R].

n—,oo
Hence, because the X;’s are uniformly P-integrable, we get the desired conver-
gence in L'(P) by letting R S co. O

The name of Theorem 1.2.10 comes from a somewhat invidious comparison

with the result in Theorem 1.4.11. The reason why the appellation weak is not
entirely fair is that, although The Weak Law is indeed less refined than the result
in Theorem 1.4.11, it is every bit as useful as the one in Theorem 1.4.11 and
maybe even more important when it comes to applications. Indeed, what The
Weak Law does is provide us with a ubiquitous technique for constructing an
approximate identity (i.e., a sequence of measures which approximate a point
mass) and measuring how fast the approximation is taking place. To illustrate
how clever selection of the random variables entering The Weak Law can lead
to interesting applications, we will spend the rest of this section discussing S.
Bernstein’s approach to Weierstrass’s approximation theorem.
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For a given p € [0,1], let {Xn :n € Z+} be a sequence of P-independent
{0, 1}-valued Bernoulli random variables with mean-value p. Then

P(Sn = é) = (Z)pl(l —p)"‘e for 0<{4<n.

Hence, for any f € C ([O, 1}; R), the nth Bernstein polynomial

(1.2.11) Ba(p; f) = i Cf)f (%) 1 — )t

£=0

of f at p is equal to
EP [fOSn].

In particular,

|7(P) = Bu(p; £)| = [EF [f(p) — f o Su]| SEP[|£(p) — f o Snl]
Szllf”u (lSn—PlZ€)+P(€» ),

where || f||, is the uniform norm of f (i.e., the supremum of | f| over the domain
of f) and

ple; f) = sup{|f(t) — f(s)] : 0<s<t<1lwitht—s<e}

is the modulus of continuity of f. Noting that var(Xn) =p(l-p) < % and
applying (1.2.8), we conclude that, for every € > 0,

Hfllu

Hf(p) B (phf)llu - 2n

2 +o6f)

In other words, for all n € Z*,
(1.2.12) |f - Bu(5s f)llu € B(n; f) = inf{“f”u +p(ef):e> 0} .

Obviously, (1.2.12) not only shows that, as n = 00, By(-; f) — f uniformly
on [0,1], but it even provides a rate of convergence in terms of the modulus of
continuity of f. Thus, we have done more than simply prove Weierstrass’s theo-
rem; we have produced a rather explicit and tractable sequence of approximating
polynomials, the sequence {Bn( i f):nelZt } Although this sequence is, by
no means, the most efficient one,! as we are about to see, the Bernstein polyno-
mials have a lot to recommend them. In particular, they have the feature that

t See G.G. Lorentz’s Bernstein Polynomials, Chelsea Publ. Co., New York (1986) for a lot
more information.



